Quantitative Proteomic Analysis Reveals Caffeine‐Perturbed Proteomic Profiles in Normal Bladder Epithelial Cells
نویسندگان
چکیده
منابع مشابه
Quantitative proteomic analysis reveals posttranslational responses to aneuploidy in yeast
Aneuploidy causes severe developmental defects and is a near universal feature of tumor cells. Despite its profound effects, the cellular processes affected by aneuploidy are not well characterized. Here, we examined the consequences of aneuploidy on the proteome of aneuploid budding yeast strains. We show that although protein levels largely scale with gene copy number, subunits of multi-prote...
متن کاملProteomic Analysis of Gene Expression in Basal Cell Carcinoma
Background: Basal Cell Carcinoma (BCC) is a type of non-melanoma skin cancer. Alteration in gene expression is the important event that happens in cancer cell. Detection of this event is possible by proteomics techniques. Methods: Normal and tumor tissues were taken from BCC patient. Total proteins were purified by standard methods, and proteins were separated by two-dimensional electrophoresis...
متن کاملQuantitative proteomic analysis of tumor reversion in multiple myeloma cells.
Tumor reversion is defined as the process by which cancer cells lose their malignant phenotype. However, relatively little is known about the cellular proteome changes that occur during the reversion process. A biological model of multiple myeloma (MM) reversion was established by using the H-1 parvovirus as a tool to select for revertant cells from MM cells. Isolated revertant cells displayed ...
متن کاملProteomic Analysis of Nasal Epithelial Cells from Cystic Fibrosis Patients
The pathophysiology of cystic fibrosis (CF) lung disease remains incompletely understood. New explanations for the pathogenesis of CF lung disease may be discovered by studying the patterns of protein expression in cultured human nasal epithelial cells (HNEC). To that aim, we compared the level of protein expressions in primary cultures of HNEC from nasal polyps secondary to CF (CFNP, n = 4), p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PROTEOMICS
سال: 2018
ISSN: 1615-9853,1615-9861
DOI: 10.1002/pmic.201800190